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This report coordinates assessments of five types of behavioral
responses in new mothers to their own infants’ cries with neurobi-
ological responses in new mothers to their own infants’ cries and in
experienced mothers and inexperienced nonmothers to infant cries
and other emotional and control sounds. We found that 684 new
primipara mothers in 11 countries (Argentina, Belgium, Brazil, Came-
roon, France, Kenya, Israel, Italy, Japan, South Korea, and the United
States) preferentially responded to their infants’ vocalizing distress
by picking up and holding and by talking to their infants, as opposed
to displaying affection, distracting, or nurturing. Complementary
functional magnetic resonance imaging (fMRI) analyses of brain re-
sponses to their own infants’ cries in 43 new primipara US mothers
revealed enhanced activity in concordant brain territories linked to
the intention to move and to speak, to process auditory stimulation,
and to caregive [supplementary motor area (SMA), inferior frontal
regions, superior temporal regions, midbrain, and striatum]. Further,
fMRI brain responses to infant cries in 50 Chinese and Italian moth-
ers replicated, extended, and, through parcellation, refined the re-
sults. Brains of inexperienced nonmothers activated differently.
Culturally common responses to own infant cry coupled with corre-
sponding fMRI findings to own infant and to generic infant cries
identified specific, common, and automatic caregiving reactions in
mothers to infant vocal expressions of distress and point to their
putative neurobiological bases. Candidate behaviors embedded in
the nervous systems of human caregivers lie at the intersection of
evolutionary biology and developmental cultural psychology.
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When Charles Darwin had his firstborn son, William Eras-
mus (“Doddy”), he made extensive notes and eventually

wrote in his “Biographical Sketch of an Infant” that “during the
first 7 days. . . of course sucking and screaming, were well per-
formed by my infant” (1). Human infants command precious few
means of agency, and so their faces and voices serve signaling
functions essential to their survival (2–4). The acoustic structure
of infant distress vocalizations (cries) and caregiver responses
appear to be conserved among mammals, including humans (2,
5). Infant cries reflect the coevolution of displays of progeny
physiological state and caregiver psychobiological mechanisms
designed to optimize strategic patterns of investment (6). From
the moment of birth, certain signals from babies effectively in-
fluence parenting: Infant cries motivate adults to approach and
to act (7, 8). That is, infant cries and caregiver responses to them
constitute an integrated dyadic system that encompasses the in-
fant production of cries as well as the adult anatomy (9–12),
physiology (5, 13), and perception, processing, and response
apparatus to cries (2, 4, 5, 14–17). Cries put both infant and
caregiver in states of strong mutual nervous system activation
and increase the probability of behavioral attunement (18).
How and why do caregivers respond to their infants’ cries? Here,

we report a confluence of results from two previously divergent
approaches to understanding this fundamental and necessary act

of human caregiving. We hypothesize that, where evolutionary
biology and developmental cultural psychology intersect, we might
pinpoint universal behaviors and the structures that subserve them
likely embedded in the nervous systems of human caregivers. The
essential challenge of systems neuroscience is to identify and
quantify brain activity underlying behavior. Specifically, human
infants’ altricial dependence on adult caregiving suggests that
mechanisms associated with prompt and appropriate caregiver re-
sponsiveness ought to be automatic and deeply ingrained in the
caregiver nervous system. From the perspective of evolutionary
biology, the human brain evolved adaptive mechanisms to optimize
decisions that enhance reproductive success (19), such as respond-
ing to the infant cry to sustain life. To test our general hypothesis,
we undertook a series of interlocked complementary studies. In
observations of maternal behavior in situ in 11 countries, we hy-
pothesized preferred and common patterns of new mothers’ re-
sponses to their own infants’ cries. In three independent companion
fMRI experiments in three countries, we sought to identify neuro-
biological underpinnings of the same behavioral responses in new
mothers in the United States to their own young infants’ cries, in
experienced mothers in China to infant cries in comparison with
noninfant cry emotional sounds, and in experienced mothers and
inexperienced nonmothers in Italy to generic infant cries.
Care-soliciting vocalizations are common in the young of many

species (2, 6, 16, 20, 21) and constitute a signal system that has
been conserved throughout mammalian evolution (2, 22). Human
infants effectively elicit parental attention, proximity, and solici-
tude by crying (23–29); in times of famine, for example, crying
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infants are more properly cared for, enhancing their chances of
survival (30, 31). Indeed, mothers react neurobiologically (32–39),
autonomically (28, 39, 40), and hormonally (41–44), as well as
behaviorally (45–48), to their babies’ cries.
No study of a single society can reveal universals of childcare

in our species. However, similarities in parenting practices across
diverse cultural groups would supply unique evidence that re-
sponses to crying constitute culturally common, species-general,
fundamental processes (49, 50). A central limitation of research
in infancy and parenting to date is that it has described con-
structs, structures, functions, and processes largely deriving from
Western, educated, industrialized, rich, and democratic societies
(50, 51). Reviews of the literature consistently show that upwards
of 80 to 90% of published psychological and developmental
studies have been conducted in North America and Western
Europe (the minority developed world) whereas only 10 to 20%
of the world’s literature represents the majority (developing)
world (51). This limitation has impeded a comprehensive un-
derstanding of caregiving and child mental health (52), led to
critiques of monocultural perspectives, and motivated consistent
calls for enlarged multicultural study. Cross-cultural comparisons
are especially valuable because they expose and deepen un-
derstanding of processes that likely generalize across disparate
populations. Identifying what is culturally common biologically
and psychologically is theoretically significant in social, behavioral,
and neural science. For our behavioral observation, therefore, we
recruited mother–infant dyads from one country in North Amer-
ica, two in South America, three in Western Europe, two in sub-
Saharan Africa, one in the Middle East, and two in East Asia (see
Table S1). For our companion neurobiological experiments, we
recruited mothers (and nonmothers) from one country in North
America, one in Western Europe, and one in East Asia.
What do new mothers naturally do when their infants cry and

why? Mothers may display affection to the infant, distract the
infant, nurture the infant, pick up and hold the infant, or talk to
the infant (3, 5, 7, 18) (see Fig. 1A and Supporting Information).
When infants cry, caregivers must balance empathy and approach
motivations with the potential to cause harm (46). That is, infant
cries draw a caregiver’s attention and solicitude but sometimes
invite neglect or maltreatment (53–55). Fundamental species-
general responses to infant cries would suggest biological bases
for generating appropriate caregiving behaviors as expressed by
the nervous system. Understanding how mothers’ brains respond
to their infants’ cries is therefore vital to optimizing care, as it is to
diagnosing and obviating risk, to the next generation.

Results
Cross-Cultural Behavioral Observation of Infants and Mothers.Mothers
in all countries showed within-country variation in all five response
types but also demonstrated regular differences across response
types (Fig. 1A and Table S2). Overall, combining countries,
mothers were significantly unlikely to respond to infant distress by
displaying affection, by distracting, and by nurturing, but mothers
were significantly likely to respond to infant distress by picking up
and holding and by talking to their infant. Some countries with
smaller sample sizes (n < 30) of usable data (at least five infant
distress vocalizations) did not reach significance for every behavior
(Supporting Information). However, in every country, average odds
ratios (ORs) for mothers’ affection, distraction, and nurturance in
response to their infants’ vocal distress were below the trans-
formed equivalent of 1, indicating that these responsive behaviors
were unlikely. By contrast, average ORs for mothers to pick up
and hold their infants and to talk to their infants in response to
their infants’ vocal distress were at or above 1 or its transformed
equivalent, indicating that these responsive behaviors were likely.
Looking across countries at maternal responses to infant vocal
distress revealed culturally common parenting practices (i.e., vir-
tually no country differences in ORs) (Supporting Information).

Mothers in 11 different countries around the world behaved
with noteworthy consistency in promptly responding to their own
infants’ vocal distress by picking up and holding their infants and
by talking to their infants as two likely contingent responses, and
displaying affection, distraction, and nurturance as three unlikely
contingent responses. In humans, infant cry is the earliest pre-
verbal form of communication. Given their high biological rel-
evance, infant-related stimuli capture adult attention and trigger
physiological responses that prepare for action and speech (56).
Evolutionary theories posit that parent responsiveness to infants
plays a crucial role in child survival and so enhances reproductive
success (24, 57). As evolutionary theorizing also appeals to the
species-common genome, the shared biological heritage of some
psychological processes presupposes their generality (58). We
therefore reasoned that, because of their cross-cultural preva-
lence and significance for species survival, behaviorally common
responses to infant cry may be subserved by neurobiological
mechanisms embedded in mothers’ nervous systems.

fMRI Experiments of Mothers’ Brain Responses to Infant Cry. To un-
cover potential neurobiological underpinnings of specific maternal
responses involving action and speech, we pursued a direct ap-
proach through fMRI in two main experiments, one of new pri-
mipara mothers’ brain responses to their own infants’ cry during
the early postpartum period, and a second of more experienced
mothers’ brain responses to infant cries in contrast to other infant
and adult emotional and control sounds. (In a third subsidiary
fMRI experiment presented in Supporting Information, we exam-
ined experienced mothers’ and nonmothers’ responses to generic
infant cries.) fMRI allowed us to visualize locations of changes in
brain metabolic activity that were correlated to the occurrence of
stimuli linked to a young infant’s vocal distress. Given our be-
havioral data, we hypothesized that infant cry (vs. other emotional
and control sounds) would activate (i) the medial superior frontal
gyrus, which includes the supplementary motor area (SMA) (59,
60) [known to be associated with two sets of functions especially
relevant here: (a) preparing for movement and the conscious in-
tention to move (61, 62), imagining to grasp (63), and experiencing
an “urge” to move (64) and (b) as the “starting mechanism of
speech” involved in preparing a verbal utterance and initiating
vocal tract movement (65–69)]; (ii) the bilateral inferior prefrontal
cortices (Broca’s areas) associated with social speech processing
(70); and (iii) the superior temporal gyri (STG) associated with
processing complex sounds (71). (iv) We also hypothesized in-
volvement of midbrain and striatum, known to play critical roles in
maternal caregiving (72–74). To test these hypotheses about brain
areas that would substantiate and presumably underlie universal
observations from the cross-cultural behavioral observations, and
to evaluate their generality, we studied mothers (and nonmothers)
in three distinct cultures: the United States, China, and Italy. (For
details about the participants, methods, and results of all fMRI
experiments, see Supporting Information.) Results with respect to
the three main hypotheses are reported here (supplementary re-
sults for hypothesis iv are reported in Supporting Information).
fMRI experiment 1: New mothers in the United States.As hypothesized,
we found one significant cluster of activation in the right pre-
SMA, bilateral clusters of activation in the dorsolateral pre-
frontal cortex (includes Broca’s areas) and in superior and
middle temporal cortices, and one large bilateral cluster that
included putamen, thalamus, and midbrain (Fig. 1B). For peaks
of activity and cluster sizes, see Table 1.
fMRI experiment 2: Experienced mothers in China.The main purposes of
fMRI experiment 2 were to replicate, extend, and refine the results
of fMRI experiment 1 in a second culture, to mothers who were
more experienced with infants, and vis-à-vis emotional sounds
other than infant cry. Results of fMRI experiment 2 replicated,
extended, and refined results of fMRI experiment 1. The infant
cry (IC) vs. noise control sound (NCS) contrast paralleled fMRI
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Fig. 1. Behavioral and fMRI responses to human infant cries. (A) Five types of maternal contingent responses to infant vocal distress in 11 countries. Display
affection: Physical behaviors (kissing) or verbal statements (“I love you”). Distract: Encouraging the infant’s attention to a property, object, or event in the en-
vironment physically or verbally. Nurture: Feeding, burping, wiping the infant’s face or hands, or diapering the infant. Pick up and hold: Lifting and supporting
some or all of the infant’s weight with the body. Talk: Vocalizing directed toward the infant. Reference lines for statistical significance are drawn. Except for talk,
which has an absolute minimum of −1, abscissae mark the absolute minima for transformed ORs. Means and 97.5% CIs. (B) US mothers. Graphical representation
of brain regions resulting from the contrast own-infant cry vs. control noise in the whole group of newmothers at 3.5 mo postpartum. The top of the figure refers
to the right hemisphere, the bottom to left hemisphere, the left to lateral views, and the right to midsagittal views. (C) Chinese mothers. Graphical representation
of brain regions resulting from the contrast infant cry vs. control noise in the whole group ofmothers at 7 mo postpartum. The top of the figure refers to the right
hemisphere, the bottom to the left hemisphere, the left to lateral views, and the right to midsagittal views. (D) Chinese mothers. Sagittal brain views of pre-SMA
and SMA-proper activation peaks (white squares) in the following contrasts (and coordinates): (a) IC vs. NCS (x = 3, y = −4, z = 64), (b) IB vs. NCS (x = 6, y = −1, z =
61), (c) AC vs. NCS (x = 6, y = 5, z = 58), and (d) IL vs. NCS (x = 6, y = 5, z = 61). The vertical anterior commissure (VAC) line (y = 0) is indicated in yellow.
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experiment 1 most closely and revealed increased activation in
the right SMA and in two large bilateral clusters centered in the
STG that extended to the inferior frontal gyrus [including
Brodmann area (BA) 44 and 45], the insula, and the globus
pallidus. Activation was also observed in one right cluster
centered in the putamen (Fig. 1C). For peaks of brain activity
and cluster size, see Table 2.
The infant laugh (IL) vs. NCS contrast revealed increased ac-

tivation in the bilateral pre-SMA and in two large bilateral clusters
centered in the STG. The left cluster extended to the middle
temporal gyrus, the inferior frontal gyrus, and the insula. The
anterior part of the right cluster included the temporal pole, the
inferior (including BA 44 and 45) and middle frontal gyrus,
the precentral gyrus, and the insula, whereas the posterior part of
the same cluster extended to the supramarginal gyrus. Another
peak of cerebral activation was observed in the clusters centered in
the right inferior gyrus. Cerebral activation was also found in the
left lateral globus pallidus, the right caudate body, and the right
thalamus (the cluster extended to the lentiform nucleus) (Fig. S1).
For peaks of brain activity and cluster size, see Table S3.

The infant babble (IB) vs. NCS contrast revealed peaks of ce-
rebral activations at the right edge between pre-SMA and SMA-
proper, in the right inferior frontal gyrus, and in two large clusters
centered in the left STG—which extended to the middle and
transverse temporal gyri, the inferior frontal gyrus (including BA
44), the postcentral gyrus and the insula—and the right STG that
included the middle temporal gyrus, the inferior frontal gyrus (in-
cluding BA 44 and 45), and the insula. We also observed subcortical
activity in the bilateral thalamus and the left medial globus pallidus
(Fig. S2). For peaks of brain activity and cluster sizes, see Table S4.
The adult female cry (AC) vs. NCS contrast revealed cerebral

activations in the right pre-SMA and in one large cluster cen-
tered in the right STG that extended to the inferior and the
middle frontal gyri, the insula, the thalamus, the putamen, and
the midbrain in both hemispheres and to the globus pallidus and
the amygdala in the right hemisphere (Fig. S3). For peaks of
brain activity and cluster sizes, see Table S5.
Summary, fMRI experiment 3, and activation peaks analysis. The fMRI
results from one Western and one Eastern culture confirm that
new mothers hearing their own infants’ vocal distress as well as

Table 1. US mothers, own-infant cry vs. control noise

Region Brodmann area Peak x Peak y Peak z t Voxels at q(FDR) < 0.01

Left superior and middle temporal gyri 41/42/22/21 −52 −20 9 9.75 20,705
Right superior and middle temporal gyri/insula 41/42/21/22/13 53 −20 6 8.57 21,803
Right middle frontal gyrus, precentral gyrus/insula 6/9/46/44/45/13 32 1 39 6.98 18,618
Left putamen/right putamen/thalamus (bilateral medial

dorsal and ventral anterior nuclei)/bilateral midbrain
(subthalamic nuclei)

−22 1 9 5.87 17,194

Right pre-supplementary motor area/bilateral medial
frontal gyrus

6/8 2 4 63 5.83 6,558

Left middle and inferior frontal gyrus 9/44/46 −40 13 33 5.43 4,132
Left anterior insula 13 −31 22 9 5.25 744
Left and right ventral posterior cingulate cortex 23 −1 −32 27 5.11 1,122
Cerebellum (pyramis) −16 −65 −30 5.09 2,067
Right supramarginal gyrus 40 47 −50 42 5.05 713
Right intraparietal sulcus 40 32 −53 36 4.75 870
Cerebellum (uvula) 8 −65 −30 4.61 547
Left superior and middle frontal gyri 9/10 −28 43 30 4.44 741

Brain regions (cluster peaks of activity are underlined), Brodmann area specifications, Talairach coordinates, t values, and cluster sizes resulting from the
contrast own-infant cry vs. control noise in the whole group of participants (see Fig. 1B for graphical representation). Brodmann areas are missing for regions
that fall outside the cerebral cortex (e.g., subcortial and cerebellar regions). qFDR, P value adjusted for the false discovery rate.

Table 2. Chinese mothers, infant cry vs. control noise

Region Brodmann area Peak x Peak y Peak z t Voxels at q(FDR) < 0.05

Left superior temporal gyrus, inferior frontal gyrus,
insula, globus pallidus

22/21/42/44/46/13 −48 −13 7 9.95 40,269

Right superior temporal gyrus, inferior frontal gyrus,
insula, globus pallidus

22/21/44/45/13 57 −13 7 10.29 33,898

Left cerebellar declive −15 −64 −20 6.03 9,002
Left anterior cingulate, medial frontal gyrus 32/10 −3 41 −5 4.78 1,711
Left superior frontal gyrus 9 −12 53 28 4.39 712
Right precentral gyrus 6 45 −1 46 4.18 867
Right putamen 21 2 13 4.15 847
Right cerebellar uvula 15 −85 −26 3.99 862
Right supplementary motor area 6 3 −4 64 3.88 302
Right inferior frontal gyrus 45 51 17 19 3.73 143
Left inferior semi-lunar lobule −12 −64 −42 3.62 529
Left precuneus 7 −24 −64 31 −3.55 319
Left precentral gyrus 6 −63 −4 31 −3.56 201

Brain regions (cluster peaks of activity are underlined), Brodmann area specifications, Talairach coordinates, t values, and cluster sizes resulting from the
contrast infant cry vs. control noise in the whole group of participants (see Fig. 1C for graphical representation). Brodmann areas are missing for regions that
fall outside the cerebral cortex (e.g., subcortial and cerebellar regions). qFDR, P value adjusted for the false discovery rate.
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experienced mothers hearing infant vocal distress generally ac-
tivate brain areas linked to the intention (i) to move and to grasp
(SMA), (ii) to speak (inferior frontal regions, SMA), and (iii) to
process auditory stimulation (superior temporal regions). (iv) In
addition, we found strong activity in other brain areas known to
be associated with caregiving (midbrain, basal ganglia, cingulate,
and insula) (75). Furthermore, we found similar results in a third
fMRI experiment with experienced Italian mothers (Fig. S4 and
Table S6). See Supporting Information for full details of fMRI
experiment 3.
In fMRI experiment 2, SMA activated to all emotional sounds

(IC, IL, IB, and AC) when contrasted with a control sound
(NCS). However, each sound has a distinctive emotional valence,
recruited different resources of the SMA, and activated different
parts of the SMA (Fig. 1D). SMA is subdivided into pre-SMA
and SMA-proper. The y coordinates of peak activations of the
sounds used in fMRI experiment 2 lay along the anterior–pos-
terior axis and ranged from y = −4 to +5. Pre-SMA is the portion
of the SMA anterior to the vertical line intersecting the vertical
anterior commissure (VAC or y = 0), and SMA-proper is pos-
terior to the VAC (60). SMA-proper and pre-SMA, located in
the medial superior frontal gyrus, are involved in motor and
cognitive control and play active roles from motor planning to
motor output and action (62, 76–78). Passive listening to non-
verbal emotional vocalizations, such as crying, laughter, and
speech, evokes responses in pre-SMA and SMA-proper, which in
turn promotes action responses. Each is also involved in affective
processing in emotion regulation (79).
However, pre-SMA and SMA-proper control motor behaviors

(reach and speech) at different levels. Functional connectivity
(80) reveals that the more rostral pre-SMA is involved in higher
level cognitive processing of motor behaviors whereas the more
caudal SMA-proper is involved in motor output of different
kinds. Pre-SMA and SMA-proper also connect to different brain
regions, which helps to explain functional differences between
them. The pre-SMA is associated with brain regions that un-
derlie cognitive and affective processing, such as the prefrontal
cortex (81), the anterior premotor area, the cingulate cortex, and
the medial prefrontal cortex (59). Pre-SMA is recruited in top-
down integration subserving actions, plans, and motivation in
volitional processes (62), as well as self-initiated actions, and is
not triggered by external cues (82, 83). By contrast, the SMA-
proper is connected with the primary motor cortex, the posterior
premotor areas, the cingulate cortex, and parietal areas. SMA-
proper is itself somatotopically organized (60) with cortical
representation from the face (anterior) to the foot (posterior)
(84, 85). The anterior portion of the SMA-proper (close to the
border with pre-SMA) is involved in producing orofacial move-
ments, vocalizations, and speech (65) and in bimanual co-
ordination of finger movements (86). SMA-proper is therefore
activated in conjunction with overt articulation and movement of
the lips and hands (78). In accord, clinical data reveal that lesions
of the SMA-proper produce language and motor impairments
(87, 88), and transcranial magnetic stimulation confirms en-
hanced hand motor-evoked potentials to infant cry in women
(89). Moreover, in contrast to the pre-SMA, the SMA-proper is
activated by external triggers (83) and is involved with sequential
processes (60). Our analysis revealed that only infant cry acti-
vated the (anterior) SMA-proper; other emotional sounds (IL,
IB, and AC) activated the pre-SMA or the border between pre-
SMA and SMA-proper (Fig. 1D).

Discussion
Some characteristics of children likely affect parents everywhere,
perhaps in similar ways. By the end of the first trimester, fetuses
are felt to move in utero (“quickening”) (90), a significant marker
in the life of the child and in the lives and psyches of parents. Soon
after birth, physiognomic features of the infant (a large head

dominated by a disproportionately large forehead, widely spaced
sizable eyes, a small snub nose, an exaggeratedly round face, and a
small chin) (91–93) prompt adults to express nurturance and so-
licitude (94–96). Moreover, many adult responses to infants are
culturally common, such as the special vocal register of child-
directed speech (97). Infant cries and maternal responses to
them appear to function in the same way.
Distress vocalizations emitted when infants are separated from

their mothers, hungry, or physically ill at ease (3, 15, 17, 98–100)
are similar in many mammals, including humans. Infant cries in-
terrupt cognition (101). Hearing infant cries, mothers (or other
caregivers) promptly move to retrieve or establish contact and
communication with offspring (2, 3, 5, 15, 17) and to nourish or
defend them against predators (102–104). Indeed, caregivers in
different species even display strong emotional and physiological
responses to cries of nonoffspring (3, 28). For example, deer
(Odocoileus hemionus and Odocoileus virginianus) mothers will
approach a speaker playing distress vocalizations of infant marmots
(Marmota flaviventris), seals (Neophoca cinerea and Arctocephalus
tropicalis), domestic cats (Felis catus), bats (Lasionycteris noctova-
gans), humans (Homo sapiens), and other mammals as though they
were going to assist a fawn in distress. Does also emit contact calls
when near that speaker, as they do when responding to their own
fawns (16). Chimpanzees are the primate species closest to hu-
mans. Chimpanzee infants emit distress vocalizations rarely and
only following physical separation from their mothers. In response
to their infants’ distress vocalizations, chimpanzee mothers move
to restore physical proximity and retrieve their infants (105). Thus,
mothers in many species respond to their infants’ calls by orienting,
approaching, retrieving, and vocalizing (106, 107).
In The Expression of the Emotions, Darwin highlighted the sig-

nificance of infant distress signals (57), and, in detailing attachment
theory, Bowlby underscored that “crying. . . plays an important part
in the earliest phases of social interaction” between parent and
child (24). Parental caregiving blends tuition and intuition. Some
aspects of parenting are learned, as through culture, but parents
also rely on their instincts in caregiving. The long evolutionary
history of altricial human infant dependency on requisite adult
caregiving suggests that some mechanisms associated with adult
attentiveness and responsiveness to infants ought to be automatic
and deeply ingrained in caregivers’ nervous systems. For example,
parents have specific implicit cognitive (108), autonomic (109,
110), and CNS (111) reactions to human infant faces that differ
from their responses to faces of human adults and faces of in-
frahuman mammal infants and adults.
We expected that some types of maternal responsiveness to

infant cry would be common across cultures. In accord with this
expectation, we explored contingencies between their own infants’
vocal distress and maternal affection, distraction, nurturance,
movement/contact, and speech, along with the neurobiological
bases of those responses, in a wide variety of societies. Nearly
700 mother–infant dyads in nearly a dozen countries were ob-
served in situ and closely analyzed. Across these social groups, new
mothers preferentially and systematically responded to their in-
fants’ vocal distress by picking up and holding and by speaking to
their infants. Corresponding fMRI results confirmed that new
mothers, hearing their own infant’s distress, and more experienced
mothers, hearing infant cries, generally activate the SMA associ-
ated with the intention to move and speak, inferior frontal regions
involved in the production of speech, and superior temporal re-
gions linked to processing auditory stimuli (61–63, 78, 111). These
automatic responses in brain and behavior appear to occur in
advance of conscious awareness, as the brain evolved adaptive
circuits in the service of reproductive success (19). SMA is asso-
ciated with the programming, generation, and control of relevant
motor action and speech sequences.
Notably, the neurobiological findings obtained for mothers but

not for nonmothers (Supporting Information). These results accord
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with others in the extant literature: Mothers exhibit more pro-
nounced neural responses in brain areas involved in emotional
processing in response to infant cry than do nonmothers (75, 112,
113), suggesting that mothers may experience the cry as an emo-
tionally important signal which requires their attention. This result
points to rapid plasticity in the maternal brain (29, 74, 114, 115).
With as little as 3 mo postpartum experience, mothers’ brains
become responsive to particular infant facial and vocal stimuli.
The behavioral observations study recruited mothers from

different parts of the world, but the three imaging experiments
recruited mothers only from the United States, China, and Italy.
Is there evidence that, following the cry of their child, similar
brain structures that promote similar responsive behaviors are
activated in mothers in still other countries? Imaging experi-
ments from Israel, Japan, and the United Kingdom reveal in-
volvement of the motor cortex in mothers listening to their own
infants’ crying, as well as looking at pictures of their own infants’
faces or watching video registrations of their own children (112,
116–120).
We do not contend that mothers’ behavioral responses to in-

fant cry differ from their responses to other infant stimuli, but
rather that mothers in different cultures preferentially respond
to infant cry in certain ways (picking up and talking to their in-
fants) and not other ways (distracting, showing affection, or
nurturing) and that their prominent motor and vocal responses
are supported by specific matching brain responses.
In the spirit of systems neuroscience, the convergence of be-

havioral and neurobiological modalities increases the validity of
results and the added value of applying both methodologies, here
in investigating parent sensitivity to infant cries. That conjunc-
tion is reinforced by related independent findings from the
emerging neuroscience of parenting. Other methodologies [for
example, event-related potentials (ERPs)] that address the tim-
ing and stages of neural responsiveness to infant cues comple-
ment fMRI data focused on neural architecture (121).
Caregiver responsiveness is vital to infant survival and hence

continuation of the species, parent–infant bonding, and the
wholesome development of the child. It has been argued that,
whether experience-expectant or experience-dependent, hard-
wired responses to newborn distress vocalizations exemplify an
adaptive speed–accuracy trade-off (121, 122), in which responding
to the infant in distress is preferred to delaying action because
hesitation increases the risk of the infant suffering harm (123).
Another evolved function of the human infant cry is to commu-
nicate phenotypic quality (fitness) to caregivers (6) because cries
signal infant health status (4, 46, 123). Finally, responsiveness to
infant distress, and not nondistress, is critical for infants’ attach-
ment security with parents, and prosocial behavior has long-lasting
impact on children’s well-being (3, 124, 125).
Studying offspring solicitation vocalizations and caregiver re-

sponsiveness contributes to understanding animal communication
systems and caregiver investment and also speaks to the etiology,
prediction, and prevention of child neglect and abuse. Caregiver
reactions to infant crying are not always benevolent. Cries some-
times trigger caregiver maltreatment (126–128). Our results en-
courage further research on caregivers who may be at-risk for
problematic responsiveness to infants. The data reported here
reveal a propensity to act and to speak in response to infant vocal
distress. However, whether the action and speech are positive and
growth-promoting or negative and harmful may depend on idio-
syncratic characteristics of the caregiver. Using brain imaging, it
may be possible to identify caregivers who are unaware or reluctant
to disclose such risks (38). For example, depressed mothers com-
pared with nondepressed mothers (129–131), and mothers who
abuse drugs compared with mothers with no such dependencies
(132), show altered brain involvement (subcortical limbic regions,
prefrontal cortex including SMA, and superior temporal cortex)
and altered behavior in response to negative emotions expressed

by their own infants. Altered cerebral activations in specific brain
circuits might compromise parental motivation or the implemen-
tation of behaviors attuned to the needs of the child. Screening
and diagnosis could be combined with early intervention to sen-
sitize parents and to enhance their understanding of the impor-
tance and meaning attached to infant cries. Such a multimodal
therapeutic approach could lead to the introduction of an array of
tools for parents to respond appropriately to optimize child care
and manage negative feelings tantamount to child maltreatment.
Healthy human mothers are likely to pick up and hold and to

speak to their infants in response to their infants’ cry, and this spe-
cific complex of behavioral responsiveness is known to calm infants
(133). A survey of more than 180 societies showed that infants cried
less when they were responded to in this way (4), and a randomized
controlled trial (RCT) demonstrated the effectiveness of this same
response (26). Perhaps because of their evolutionary advantage,
these reactions toward infants are specific and automatic, wide-
spread culturally, and embedded neurobiologically in mothers.

Materials and Methods
Cross-Cultural Behavioral Observation of Infants and Mothers. All study pro-
cedures and consent documents were approved by the Institutional Review
Board of the Eunice Kennedy Shriver National Institute of Child Health and
Human Development, and mothers provided written informed consent. We
first recruited, observed, and recorded 1 h of home-based naturalistic mother–
infant interactions in 684 dyads in 11 countries, including Argentina, Belgium,
Brazil, Cameroon, France, Kenya, Israel, Italy, Japan, South Korea, and the
United States. Only primipara mothers and firstborn singleton healthy awake
full-term 5.5-mo-olds participated, with approximately equal numbers of girls
and boys in each country sample. (Detailed sociodemographic information for
all participants appears in Table S1.) Next, we carefully operationalized infant
cries (distress vocalizations that indicated protest, complaint, anger, or upset
and encompassed whining, fretting, fussing, whimpering, and full-blown dis-
tress) and five maternal response types (affection, distraction, nurturance,
action, and speech) and coded video records of infants and mothers using
mutually exclusive and exhaustive schemes to mark all behavior onsets and
offsets to the nearest 0.10 s (for details of behavior durations, coding, and
reliability see Supporting Information). Finally, we analyzed behavioral con-
tingencies between maternal responses and infant cries in terms of odds ratios
(ORs) (Supporting Information). Separately for each dyad, time units were
tallied in two-by-two tables for each behavioral sequence, and ORs were
computed for each table (134, 135). Odds ratios indicate the likelihood of
mothers’ responding to infant distress within a 5-s time window of the onset
of a cry, with each response type compared with the likelihood of their initi-
ating the same five behaviors outside of those time windows. This microana-
lytic strategy allowed us to examine in quantitative detail lead–lag sequences
of infant cry–mother response, taking into consideration the timing of their
interactions at the level of in-the-moment lived experiences.

fMRI Experiment 1: New Mothers in the United States. All study procedures and
consent documents were approved by the Yale University School of Medicine
Human Investigations Committee, and deidentified data were used in this
study. Participants provided informed consent. We recruited 43 new primipara
healthy European American middle-class mothers and their 3.5-mo-olds (56%
male). Acoustic stimuli consisted of each mother’s own-infant cry and own-
infant noise (matched in pattern, intensity, and frequency range to their own
infant’s cry). Because each own-infant cry varied according to each infant’s
individual characteristics, the own-infant cry and matched control sounds were
necessarily unique to each mother. Mothers underwent two fMRI scanning
sessions at 3 tesla in a Siemens Trio full-body scanner. They heard 10 blocks of
stimuli. Each block of 30 s was composed of own-infant cry or own-infant
control sound. Imaging data analyses were performed with BrainVoyager
QX version 2.0 (Brain Innovation; www.BrainVoyager.com) (see Supporting
Information for preprocessing details). Using general linear models (GLMs), we
analyzed whole-brain blood oxygenation level-dependent (BOLD) activity and
contrasted activity during exposure to own-infant cry to activity during ex-
posure to the own-infant control sound.

fMRI Experiment 2: Experienced Mothers in China. All study procedures and
consent documents were approved by the East China Normal University
Committee on Human Research. Participants provided written informed
consent. We recruited 44 healthy Shanghai Chinese middle-class mothers of
7.6-mo-olds (57% male). Acoustic stimuli consisted of infant cries (ICs), infant
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laughs (ILs), infant babbles (IBs), adult female cries (ACs), and noise control
sounds (NCSs) (derived from andmatched to ICs). ICs and ILs were retrieved from
Oxford Vocal (OxVoc) Sounds (136) and public online databases. IBs, which can
have characteristic sounds of the native language (137–139), were collected
from native Chinese infants. ICs, ILs, and IBs came from children in the first year
of life. Mothers underwent two fMRI scanning sessions at 3 tesla in a
Siemens Trio Tim system. They heard 48 blocks of stimuli. Each block of 15 s
consisted of one of the five sounds: IC or IL or IB or AC or NCS. Imaging data
analyses were performed with BrainVoyager QX version 2.8 (Brain Innovation;
www.BrainVoyager.com) (see Supporting Information for preprocessing details).

Using GLM, we analyzed whole-brain BOLD activity and created one statistical
whole-brain map for each of the following contrasts: IC vs. NCS, IL vs. NCS, IB
vs. NCS, and AC vs. NCS.
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